Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans.
نویسندگان
چکیده
Stomatopod crustaceans have complex and diverse visual systems. Among their many unique features are a specialized ommatidial region (the midband) that enables the eye to have multiple overlapping visual fields, as well as sets of spectral filters that are intercalated at two levels between tiers of photoreceptors involved in polychromatic color vision. Although the physiology and visual function of stomatopod eyes have been studied for many years, how these unique visual features originated and diversified is still an open question. In order to investigate how stomatopods have attained the current complexity in visual function, we have combined physiological and morphological information (e.g. number of midband rows, number of filters in the retina, and the spectral properties of filters) with new phylogenetic analyses of relationships among species based on nucleotide sequence data from two nuclear (18S and 28S rDNA) and two mitochondrial [16S and cytochrome oxidase I (COI)] genes. Based on our recovered phylogenetic relationships among species, we propose two new superfamilies within the Stomatopoda: Hemisquilloidea and Pseudosquillodea. Maximum likelihood ancestral state reconstructions indicate that ancestral stomatopod eyes contained six midband rows and four intrarhabdomal filters, illustrating that the visual physiological complexity originated early in stomatopod evolutionary history. While the two distal filters contain conservative sets of filter pigments, the proximal filters show more spectral diversity in filter types, particularly in midband row 2, and are involved in tuning the color vision system to the photic environment. In particular, a set of related gonodactyloid families (Gonodactylidae, Protosquillidae, Takuidae) inhabiting shallow, brightly lit coral reef waters contain the largest diversity of filter pigments, which are spectrally placed relative to the underlying photoreceptors to take advantage of the broad spectrum of light available in the environment.
منابع مشابه
Hiding opaque eyes in transparent organisms: a potential role for larval eyeshine in stomatopod crustaceans.
Opaque screening pigments are a fundamental requisite for preserving resolution in image-forming eyes. Possession of any type of image-forming eye in a transparent, pelagic animal will thus undermine the ability of that animal to be invisible in the water column. Transparent, pelagic animals must therefore deal with the trade-off between the ability to see and the ability of other animals to se...
متن کاملElectrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra.
Gonodactyloid stomatopod crustaceans possess polarization vision, which enables them to discriminate light of different e-vector angle. Their unusual apposition compound eyes are divided by an equatorial band of six rows of enlarged, structurally modified ommatidia, the mid-band (MB). The rhabdoms of the two most ventral MB rows 5 and 6 are structurally designed for polarization vision. Here we...
متن کاملMolecular diversity of visual pigments in Stomatopoda (Crustacea).
Stomatopod crustaceans possess apposition compound eyes that contain more photoreceptor types than any other animal described. While the anatomy and physiology of this complexity have been studied for more than two decades, few studies have investigated the molecular aspects underlying the stomatopod visual complexity. Based on previous studies of the structure and function of the different typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 20 شماره
صفحات -
تاریخ انتشار 2010